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The estimation of the percentage of transgenic Bt maize in maize flour mixtures has been achieved in this
work by high-performance liquid chromatography using perfusion and monolithic columns and chemo-
metric analysis. Principal component analysis allowed a preliminary study of the data structure. Then, lin-
ear discriminant analysis was used to develop decision rules to classify samples in the established
categories (percentages of transgenic Bt maize). Finally, linear regression (LR) and multivariate regression
models (namely, principal component analysis regression (PCR), partial least squares regression (PLS-1),
and multiple linear regression (MLR)) were assayed for the prediction of the percentages of transgenic
Bt maize present in a maize flour mixture. Using the relative areas of the protein peaks, MLR provided
the best models and was able to predict the percentage of transgenic Bt maize in flour mixtures with an
error of ±5.3%, ±2.3%, and ±3.8% in the predictions of Aristis Bt, DKC6575, and PR33P67, respectively.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Genetically modified maize is one of the most extensively culti-
vated genetically modified organism (GMO), being the modifica-
tions introduced in these cultivars, basically, aimed to enable
resistance to herbicides or to increase tolerance to insects and
pests (Hernández, Esteve, Prat, & Pla, 2004). Three different events
of transgenic maize (Zea mays) containing different sequences of a
synthetic CryIA(b) gene have been authorized for commercializa-
tion in Europe: Event 176, MON 810, and Bt11 (Margarit, Regg-
iardo, Vallejos, & Permingeat, 2006). The transgenic maize Event
176, MON 810, and Bt11 were genetically engineered to resist
the European corn borer (Ostrinia nubilalis) which is the most dam-
aging insect pest of maize (Agriculture and Biotechnology Strate-
gies, 2005). In Spain, several maize lines with the event Bt-176
and MON 810 have been inscribed in the Spanish Commercial Vari-
eties’s Register (7052/1998, BOE 26th March; APA/520/2003, BOE
11th March; APA/314/2004, BOE 16th February; APA/3059/2009,
BOE 6th October).

The need to verify GMO levels in foods has created a new de-
mand for analytical testing (Erickson, 2000). Many governments
have already implemented regulations for the use and labeling of
genetically modified organism (GMO)-derived ingredients (Cardar-
ll rights reserved.

a).
elli, Branquinho, Ferreira, da Cruz, & Gemal, 2005). Verification that
non-GMO food products really do not contain GMO will likely con-
tinue driving the demand for GMO testing (Erickson, 2000). On the
other hand, several companies are developing products, in which
composition GMOs have been included so they need specific meth-
ods for testing their final products. Consequently, reliable and
accurate methods for the identification and quantification of trans-
genic maize are required.

The approaches developed for the identification of transgenic
cultivars are based on the detection of those targets making differ-
ent the transgenic and the non-transgenic cultivar: the recombi-
nant DNA fragment inserted or the expressed protein. The two
most common approaches for GMO detection are polymerase
chain reaction (PCR)-based methods (Cankar, Stebih, Dreo, Zel, &
Gruden, 2006; Deisingh & Badrie, 2005; García-Cañas, Cifuentes,
& González, 2004; García-Cañas, González, & Cifuentes, 2002a,
2002b; García-Cañas, González, & Cifuentes, 2004; Hubner, Studer,
& Luthy, 1999; Papazova et al., 2006; Trapmann & Emons, 2005),
which detect genetically modified DNA sequences and immuno-as-
say (Head, Surber, Watson, Martin, & Duan, 2002; Luthy, 1999;
Margarit et al., 2006; Markoulatos et al., 2004; Stave, 1999; Van
Duijn, van Biert, Bleeker-Marcelis, Peppelman, & Hessing, 1999;
Volpe, Ammid, Moscone, Occhigrossi, & Palleschi, 2006), which
measures levels of proteins expressed by transgenic genes. Despite
these methodologies are well established, the result may be signif-
icantly affected by the processing procedure followed by the food
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containing the transgenic cultivar, the DNA extraction procedure
employed, etc. Moreover, these methods are very tedious and time
consuming and if for each modification a different assay has to be
set up, the analysis will soon become too costly and, thus, not suit-
able for routine analysis (Engel, Moreano, Ehlert, & Busch, 2006;
Margarit et al., 2006; Walschus, Witt, & Wittmann, 2002). As a con-
sequence, scientific community is trying to improve the weakness
of the existing proposals.

Reversed-phased high-performance liquid chromatography
(RP-HPLC) has been applied to the characterization of different
plant genotypes (Lookhart, Bean, & Bietz, 2003). To our knowl-
edge, no study has been published so far on the application of
RP-HPLC to the estimation of transgenic Bt maize in maize flour
mixtures. Recently, rapid perfusion and monolithic RP-HPLC
methods were designed for the separation of maize proteins
(Rodríguez-Nogales, García, & Marina, 2006a, 2006b). These
methods were successfully applied to the characterization of
inbred and hybrid maize lines (Rodríguez-Nogales, García, & Mar-
ina, 2006c). Moreover, we have characterized, for the first time,
the protein fractions from Bt-transgenic and non-transgenic
maize varieties using perfusion and monolithic RP-HPLC in very
short analysis times (<4 min with the perfusion column and
<8 min with the monolithic column) (Rodríguez-Nogales, Cifuen-
tes, García, & Marina, 2007). A comparison of the chromatograms
of protein fractions relative to transgenic and non-transgenic vari-
eties evidenced quantitative differences on the percentages of
area. These results encouraged us to test the applicability of these
chromatographic methods for the quantitative determination of
transgenic Bt-maize in maize flour mixtures.

Principal component regression (PCR), partial least squares (PLS)
regression, and multiple linear regression (MLR) are multivariate
statistical techniques that have been applied in different sciences
to obtain calibration models as an alternative to linear regressions.
These statistical methods have provided good predictive models for
the simultaneous analysis of multi-mixtures in foods (Moreno,
Merkoc�i, Alegret, Hernández-Cassou, & Saurina, 2004; Poveda, Gar-
cía, Martín-Alvarez, & Cabezas, 2004; Rodriguez-Nogales, 2006).
Multivariate regressions have also been used to distinguish trans-
genic products from conventional ones. Roussel, Hardy, Hurburgh,
and Rippke (2001) detected and segregated transgenic Roundup
ReadyTM soybeans from conventional soybeans using PLS models
by NIR spectroscopy. Recently, Xie, Ying, Yinga, Yua, and Fua
(2007) have also used PLS regressions for the discrimination of
transgenic tomatoes based on visible/near-infrared spectra.

Therefore, the goal of this work was to provide a procedure for
the estimation of the percentage of transgenic Bt maize in maize
flour mixtures based on perfusion and monolithic RP-HPLC analy-
sis of their protein extracts. Principal component analysis (PCA)
and linear discriminant analysis (LDA) were used to explore the
data matrix. Finally, linear regression (LR) and multivariate regres-
sions (principal component analysis regression (PCR), partial least
squares regression (PLS-1), and multiple linear regression (MLR))
were compared to develop models for the prediction of percent-
ages of transgenic Bt maize in maize flour mixtures.
2. Materials and methods

2.1. Chemicals

HPLC grade acetonitrile (ACN) (Merck, Darmstadt, Germany),
HPLC grade water (Milli-Q system, Millipore, Bedford, MA, USA),
and trifluoroacetic acid (TFA) (Sigma, St. Louis, MO, USA) were used
in the preparation of mobile phases. 2-mercaptoethanol (Merck)
and ammonium acetate (Panreac, Barcelona, Spain) were em-
ployed for the extraction of maize proteins.
2.2. Samples

Transgenic Bt maize seeds with the even MON 810 (PR33P67
(from Pioneer Hi-Bred International, Inc.), DKC6575 (from Monsan-
to Company), and Aristis Bt (from Nickerson Ltd.)) and its non-Bt
transgenic control maize varieties (PR33P66, Tietar, and Aristis,
respectively) were employed for this study. Flours of these maize
lines were produced by grinding with an analytical mill (IKA Labor-
technik, Staufen, Germany) thirty kernels during three minutes at
ambient temperature.

For each one of the three mentioned Bt maize cultivars, twenty
flour mixtures with different percentages of transgenic Bt maize
(calibration samples: 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 60, 70, 80, 90, and 100% (w/w)) were prepared by appropriate
mixing of each transgenic and non-transgenic lines. Dry matter
content of the maize flours was determined by drying at 130 �C
to constant weight. For the validation of the prediction models, five
different flour mixtures (4, 15, 20, 60, and 80% (w/w) of transgenic
Bt maize) were also prepared by duplicate.

The protocol for preparing the protein extracts from each maize
flour mixtures was the following: 30 mg of maize flour mixture
were weighed and dissolved in 1 mL of 0.5% (v/v) 2-mercap-
toethanol, 0.5% (w/v) ammonium acetate, and 45% ACN (v/v) in
water. The mixture was sonicated (150 W, 50 Hz, FS-30, Fisher Sci-
entific, Pittsburgh, PA) for 5 min and centrifuged (AvantiTM J-25
centrifuge, Beckman Coulter, USA) for another 5 min at 3362g to
remove the supernatants that were injected in the chromato-
graphic system (Rodríguez-Nogales et al., 2006a; Rodríguez-No-
gales et al., 2006b).

2.3. High-Performance liquid chromatography

A Hewlett–Packard 1100 Series liquid chromatograph (Hewlett–
Packard, Pittsburgh, PA, USA) equipped with a degassing system, a
binary pump, a thermostated compartment for the column, an
injection system, and a diode-array detector was used. Data were
recorded and processed with the HP-Chemstation software. The
separation of maize proteins was accomplished with a POROS R2/
H perfusion column (4.6 � 50 mm; 10 lm particle size) (Perseptive
Biosystems, Framingham, MA, USA) and a monolith silica column
ChromolithTM Performance RP-18e (4.6 � 100 mm) (Merck).

Maize proteins were eluted using a previously optimized per-
fusion RP-HPLC method (Rodríguez-Nogales et al., 2006a): mo-
bile phase A, 0.1% (v/v) TFA in Milli-Q water; mobile phase B,
0.1% (v/v) TFA in ACN; linear binary gradient, 5.0–50.2% B in
2.40 min, 50.2–65.4% B in 0.98 min, and 65.4–5.0% in 1 min;
injection volume, 20 lL; flow-rate, 3 mL/min; temperature,
25 �C; UV detection, 280 nm. The separation conditions for the
monolithic column were those optimized previously (Rodrí-
guez-Nogales et al., 2006b): linear binary gradient, 5.0–26.4% B
in 5.15 min, 26.4–87.5% B in 2.16 min, and 87.5–5.0% in 1 min;
temperature, 35 �C. The injection volume, flow-rate, mobile
phase composition, and wavelength detection were as in perfu-
sion chromatography.

2.4. Data treatment

The area percentage for every peak was calculated as the aver-
age of two replicates (injected by duplicate). The integration was
performed by setting the baseline from valley to valley. The origi-
nal data of the peak areas were normalized before the statistical
analysis by subtracting the average from each variable and then
dividing by the standard deviation. Chromatographic data of the
calibration samples of maize flours were analyzed by one-way AN-
OVA, principal component analysis (PCA), and linear discriminant
analysis (LDA). One-way ANOVA was performed (with a significant
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level of 0.05) for each type of maize flour mixture and for each
peak, using as factor the percentage of transgenic Bt-maize on
the flour mixture. PCA was applied in order to study the association
of samples. Stepwise LDA was performed for the classification of
the samples according to the percentage of transgenic Bt maize
in the maize flours. For that purpose, the ‘‘forward” procedure,
which begins with no variables in the model and adds the variables
with the greatest discriminating power, was selected. This analysis
selects the variables that allow differentiating among flours with
different percentages of Bt-transgenic maize. The statistical F-func-
tion was used as criterion for variable selection. The prediction
capacity of the discriminant models was studied by ‘‘cross-valida-
tion”. The cross-validation is done by treating n – 1 out of n obser-
vations as the training dataset to determine the discrimination rule
and using the rule to classify the one observation left out (Webb,
1999).

Principal component analysis regression (PCR), partial least
squares regression (PLS-1), multiple linear regression (MLR), and
linear regression (LR) were used for the prediction of the percent-
age of transgenic Bt-maize in flour mixtures (X-variable) based on
the parameters analyzed (relative peak areas from perfusion and
monolithic RP-HPLC analysis of the protein extracts, Y-variables).
The errors associated with the calibration and prediction were ob-
tained by calculating the standard error of calibration (SEC) and
prediction (SEP), respectively (CAMO, 1996). SEC was defined as:

SEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ðyCi � yiÞ
2

n

vuut

where yCi is the predicted percentage of transgenic sample in cali-
bration sample i, yi is the real percentage in the calibration samples
i, and n is the number of calibration samples. SEP (error of predic-
tion) was chosen as an optimized criterion to validate the built cal-
ibration, which was defined as:

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ðyPi � yiÞ
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Fig. 1. Perfusion RP-HPLC chromatograms of maize proteins from flour mixtur
where yPi is based on the previously developed calibration models,
yi is the real percentage in the calibration samples i, and m is the
number of evaluation samples.

The detection limit (DL, 3�SEC/b) of the linear regression can be
calculated from the standard error of calibration (SEC) and the
slope of the calibration lines (b) (Miller & Miller, 2000).

ANOVA, PCA, LDA, and linear regressions (LR) were done with
the computer program Statgraphics� Plus for Windows 4.0 (Statis-
tical Graphics Corp., Rockville, MD 20852-4999 USA). Unscrambler
program v. 7.01 (Camo, ASA, Trondeheim, Norway) was used for
the application of PCR, PLS-1, and MLR.

3. Results and discussion

3.1. Analysis of maize flour mixtures with different percentages of
transgenic Bt maize

Fig. 1 shows the perfusion chromatographic profiles obtained for
the flour mixtures with a 0%, 50%, and 100% of transgenic Bt maize
from the three cultivars (Aristis Bt, DKC6575, and PR33P67). The
chromatograms with a 0% of transgenic Bt maize correspond to
the non-transgenic maize lines (Aristis, Tietar, and PR33P66,
respectively). Maize proteins eluted in eight peaks in about three
min. In previous works performed by our research team, these eight
peaks could be assigned to proteins belonging to albumin, globulin,
prolamin, and glutelin fractions of proteins from maize (Rodríguez-
Nogales et al., 2006a, 2007). For Aristis Bt, the signal for peak 3 was
higher than that found for peak 2. Furthermore, the ratio between
the signals of peaks 3 and 2 was smaller for the transgenic Aristis
Bt line (100% in the flour mixture) than for its non-transgenic Aristis
line (0% in the flour mixture). The chromatograms obtained for the
other transgenic and non-transgenic Bt maize lines showed that the
signal for peak 3 was always smaller than that for peak 2, that is the
signal for peak 2 was more intense for the lines PR33P67 and
PR33P66 than for the lines Tietar and DKC6575. The results of the
one-way ANOVA showed that significant differences were not
found for peaks 5 and 6 in Aristis Bt flours, for peaks 1, and 4–7,
in DKC6575 flours, and for peaks 1 and 6 in PR33P67 flours.
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Fig. 2. Monolithic RP-HPLC chromatograms of maize proteins from flour mixtures of different cultivars with different percentage of transgenic Bt maize.
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The chromatograms obtained for the monolithic RP-HPLC anal-
ysis of control and transgenic Bt maize lines plus a mixture of con-
trol and transgenic Bt maize (50%) of each one of the lines studied
are shown in Fig. 2. Maize proteins were separated in eleven peaks
and were characterized by the presence of a big peak (peak 3) at a
retention time of 4.3 min, a duplet of peaks partially resolved
(peaks 6 and 7) in the middle of the chromatograms, and a triplet
of peaks (peaks 8, 9 and 10) together with peak 11 at the end of the
chromatograms. The signals for peaks 6 and 7 decreased at increas-
ing the percentage of transgenic line in the flour mixtures contain-
ing Aristis Bt and DKC6575. On the other hand, the signal for peak 3
was also smaller than that found for peak 7 in Aristis and Aristis Bt.
However, in Tietar (the non-Bt transgenic maize variety of
DKC6575) and DKC6575 and in PR33P66 (the non-Bt transgenic
maize variety of PR33P67) and PR33P67 maize lines, the signal
for peak 3 was always higher than that observed for peak 7. The re-
sults of the one-way ANOVA revealed significant differences be-
tween the different calibration flour mixtures of transgenic and
non-transgenic maize lines, specifically, for peaks 1, and 3–11 in
Aristis and Aristis Bt, for peaks 3, 5–7, and 9 in Tietar and
DKC6575, and for peaks 3, 5, 7–9, and 11 in PR33P66 and
PR33P67. Good reproducibility was achieved in both columns.
For duplicate injection, the RSD was better than 1% in peak area
and in retention times, whereas for three replication samples, the
RSD values were below 1% in retention time and 3–4% in peak area
(Rodríguez-Nogales et al., 2007).

The total protein content for the transgenic cultivars PR33P67
(7.86%), DKC6575 (7.81%), and Aristis Bt (7.64%) was equivalent
to their control lines (PR33P66, 8.01%; Tietar, 7.89%; Aristis,
7.69%, respectively). However, we observed differences on protein
profiles analyzed by perfusion and monolithic RP-HPLC among Bt-
maize and control lines. Since both cultivars (transgenic and con-
trol lines) were grown under similar agronomic conditions, the dif-
ferences observed on chromatographic profiles could be attributed
to the genetic modifications. Indeed, different examples have
shown that genetic modifications in a food not detected by stan-
dard nutritional analyses (protein, fat, ash, carbohydrates, calories
and amino acid) could be observed using other analytical method-
ologies (FAO/WHO, 2000).
Although the differences observed in the means of some vari-
ables among Bt-maize flour mixtures may reveal some interesting
features and enabling the differentiation among the groups of sam-
ples with different percentages of Bt-maize, the amount and com-
plexity of these data make the use of PCA and LDA necessary to
fully extract the wealth of this information.

Data for relative peak areas from perfusion RP-HPLC analysis of
the flour mixtures were analyzed using principal component anal-
ysis (PCA). The PCA extracted two components (with eigenvalues
greater than one) for Aristis Bt and DKC6575, and only one compo-
nent for PR33P67. These components accounted for 76.2%, 66.9%
and 69.5% of the variability of the original data for Aristis Bt,
DKC6575, and PR33P67, respectively. The first component (PC1)
discriminated samples from the relative areas of peaks 2 and 3
for Aristis Bt and DKC6575 and peaks 2 and 7 for PR33P67. Relative
area for peaks 5 and 4 and 1 and 7 were the variables that showed
the highest weight on the second component (PC2) for Aristis Bt
and DKC6575, respectively.

Fig. 3 shows a PCA bi-plot of PC1 versus PC2 with the factors
(relative area of the eight peaks) and the samples of flour blends
of Aristis and Aristis Bt analyzed by perfusion and monolithic RP-
HPLC. These plots provide information regarding patterns in the
sample set. For perfusion RP-HPLC, peaks 2 and 3 were the vari-
ables with more importance for PC1 with eigenvectors of 0.39
and �0.38, respectively. The group of the flours with the lowest
percentages of transgenic Bt maize were situated on the left of
the origin (negative values of PC1) presenting high values of the
relative area for peak 3. The samples of flours with the highest per-
centages of Aristis Bt were situated to the right of the origin (posi-
tive values of PC1) and they were characterized by presenting high
area percentages for peaks 2 and 1. These results suggest that
peaks 2 and 3 are very important to differentiate among samples
on the basis of their percentage in transgenic Bt maize.

When PCA was applied to the monolithic RP-HPLC data, four
PC’s were extracted for each line accounting for 78.5% of the total
variability in Aristis Bt, 78.9% in DKC6575, and 71.1% in PR33P67.
For PC1, relative area for peaks 6 and 7, 3 and 9, and 3 and 7 pre-
sented the highest eigenvectors in Aristis Bt, DKC6575, and
PR33P67, respectively. Fig. 3 shows the distribution of the samples
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of flour mixtures of Aristis and Aristis Bt in the space of the PC1 and
PC2. Samples were distributed along PC1 on the basis of the con-
tent in Bt maize. The samples with the least percentages of trans-
genic maize presented negative values for PC1 (high values of
relative area for peaks 6, 7, 9, and 10). On the other hand, the mix-
tures with the highest percentages of Bt maize were located on the
positive side of PC1 (high values of relative area for peaks 3, 1, 4,
and 11). The factors are positively correlated if they are situated
on the same side of the origin and negatively correlated if they
lie on the opposite side, thus, relative area for peaks 6, 7, 9, and
10 for Aristis and Aristis Bt were located very close to each other
in the plot indicating that they are closely related. Similar results
were found for the PCA of the other two Bt-maize varieties. Show-
ing the PCA results, it was expected that the perfusion and mono-
lithic RP-HPLC chromatographic profiles could be useful to
discriminate the flour mixtures according to the content in Bt
maize.

Then, a stepwise discriminant analysis was applied to perfusion
and monolithic RP-HPLC data using the forward procedure. Fig. 4
shows, as example, the plot of the flour mixtures with different
concentrations of Aristis Bt analyzed by perfusion and monolithic
RP-HPLC and defined by the two first discriminant functions. Very
good and clear separation among the samples according to their
percentages in transgenic Bt maize was observed. The relative area
for peaks 2, 3 and 7 for perfusion RP-HPLC, and peaks 6, 7, and 11
for monolithic RP-HPLC were the most important variables for the
differentiation among Aristis Bt flour mixtures. In both chromato-
graphic methods, the maize flours with the highest and the lowest
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concentrations of Bt maize were located in the negative and posi-
tive side of the first discriminant function, respectively. A percent-
age of correct classification for perfusion and monolithic data of
100% was achieved. The prediction capability of the model was
evaluated by cross-validation achieving a percentage of prediction
of 92.0% and 90.1%, for perfusion and monolithic RP-HPLC, respec-
tively. For DKC6575 and PR33P67 Bt maize cultivars, a 100% of cor-
rect classification was also achieved by both chromatographic
methods. Percentages of prediction of 90.2% and 87.3% (for perfu-
sion RP-HPLC), and 86.3% and 85.2% (for monolithic RP-HPLC),
were obtained, for DKC6575 and PR33P67, respectively.

3.2. Estimation of the percentage of transgenic Bt maize in maize flour
mixtures

With the aim of predicting the percentage of transgenic Bt
maize in flour mixtures, several chemometric approaches (LR,
PLS, PCR, and MLR) were evaluated. The error of calibration (SEC)
and the square correlation coefficient (R2) were used to compare
models for accuracy and robustness. SEC is an indicator of the aver-
age error in the analysis for each component and how well the
model fits to the data. The preferred model was the one that pro-
duced the lowest SEC and the R2 value closest to one.

Table 1 summarizes the results of the models developed with
the perfusion RP-HPLC data. Linear regressions were applied to
the calibration samples, using as Y-calibration variables relative
areas for peaks 2 and 3 for Aristis Bt and DKC6575, and relative
areas for peaks 2 and 7 for PR33P67. The best results were found
with the ratio of relative areas for peaks 3 and 2, for Aristis Bt
and DKC6575, and for the relative area of peak 2 for PR33P67,
achieving R2 values higher than 0.98 and SEC values lower than
5.14%. Similar results were found for the detection limit, showing
the lowest values using as Y-variables the ratio of relative areas
for peaks 3 and 2, for Aristis Bt and DKC6575, and for the relative
area of peak 7 for PR33P67. Multivariate regressions (PLS, PCR, and
MLR) were also tested achieving, in general, higher values for R2
Table 1
Statistical parameters of validation and prediction of the regression models for the transg

Regression
models

Aristis Bt DKC6575

P2 P3 P3/P2 PLS-1 PCR MLR P2 P3 P

R2 a 0.968 0.985 0.987 0.987 0.987 0.973 0.979 0.988 0
SEC b 7.78 5.41 4.96 4.27 4.25 4.66 6.43 4.83 4
DL c 0.70 0.85 0.63 0.57 0.39 0
SEP d 5.93 5.33 6.02 5.27 6.12 5.25 3.86 3.84 3

a Coefficient of determination of the model.
b Standard error of calibration (in %).
c Detection limit calculated as 3 SEC/m where m is the slope of the model (in g of tra
d Standard error of prediction (in%).

Table 2
Statistical parameters of validation and prediction of the regression models for the transg

Regression
models

Aristis Bt DKC6575

P6 P7 P6/P7 PLS-1 PCR MLR P6 P6/P3

R2 a 0.914 0.932 0.257 0.973 0.974 0.961 0.932 0.942
SEC b 13.17 11.78 31.37 7.29 6.84 7.86 10.56 9.73
DL c 1.29 1.03 2.23 1.27 1.41
SEP d 14.06 6.73 34.45 7.80 6.84 5.71 7.96 7.68

a Coefficient of determination of the model.
b Standard error of calibration (in %).
c Detection limit calculated as 3 (SEC/m where m is the slope of the model (in g of tr
d Standard error of prediction (in %).
and lower values for SEC than those found for the linear regres-
sions. The best calibrations (with the lowest values of SEC) were
found when applying PCR to the Aristis Bt and DKC6575 data set
and MLR regression to the PR33P67 data set. These models were
used to predict the percentage of transgenic maize in different
flour mixtures prepared with known quantities of Bt maize (Table
1). In this case, error of prediction (SEP) was chosen as an optimiz-
ing criterion to validate the built calibrations. Better results were
achieved for multivariate regressions (with SEP ranging from
2.58% to 6.12%) especially with MLR regressions achieving SEP val-
ues of 5.25%, 2.34%, and 4.68% for Aristis Bt, DKC6575, and
PR33P67, respectively.

The results of the linear and multivariate models applied to the
prediction of the percentage of transgenic Bt maize in flour mix-
tures analyzed by monolithic RP-HPLC are summarized in Table
2. Regarding the linear regressions, peaks 6 and 7 for Aristis Bt,
peaks 6, 3, and 7 for DKC6575, and peaks 3 and 9 for PR33P67 were
employed as calibration variables. With exception of the model
built with the ratio between peak 6 and 7 for Aristis Bt, the R2 val-
ues were higher than 0.91 and yielded good correlations between
the observed and calculated percentage of Bt maize. The values
of SEC were worse than those found in perfusion RP-HPLC.

Additionally, PLS, PCR and MLR regressions were applied to the
monolithic RP-HPC data set. For Aristis Bt, the best calibration mod-
el was obtained using PCR achieving a SEC value of 6.84% and a R2

value of 0.9735. The values of SEC and R2 were similar in DKC6575
data set, independently of the multivariate regression assayed,
oscillating between 7.67% (MLR regression) and 7.83% (PCR regres-
sion) for SEC, and between 0.9553 (MLR regression) and 0.9725 (PCR
regression) for R2. In the case of PR33P67, the best results were
found for PLS1 and PCR with the same value of R2 (0.9930) and sim-
ilar values of SEC (4.37% for PLS1, and 4.43% for PCR). The limits of
detection of the models were higher than those obtained with the
perfusion RP-HPLC data. According to the values of SEP, for the three
Bt maize cultivars, and similarly to perfusion, MLR regressions were
superior at modeling percentages of Bt maize.
enic maize lines analyzed by perfusion RP-HPLC

PR33P67

3/P2 PLS-1 PCR MLR P2 P7 P7/P2 PLS-1 PCR MLR

.988 0.955 0.955 0.990 0.981 0.943 0.967 0.985 0.985 0.986

.80 3.46 3.20 3.50 5.14 7.88 5.95 4.93 4.91 4.06

.17 0.48 0.30 0.68

.46 2.58 3.20 2.34 5.09 11.98 10.71 4.93 4.92 4.68

nsgenic maize/100 g of flour).

enic maize lines analyzed by monolithic RP-HPLC

PR33P67

P7/P3 PLS-1 PCR MLR P3 P9 P3/
P9

PLS-1 PCR MLR

0.931 0.971 0.973 0.955 0.934 0.972 0.963 0.993 0.993 0.978
10.59 7.73 7.83 7.67 11.59 7.58 8.76 4.37 4.43 5.49

1.63 1.95 1.81 1.35
7.10 7.73 7.84 5.71 6.43 5.49 5.40 4.38 4.43 3.84

ansgenic maize/100 g of flour).
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In conclusion, perfusion and monolithic RP-HPLC maize pro-
teins presented appropriate information to classify maize flour
mixtures containing Bt maize based on the results found with
the principal component and linear discriminant analysis. Further-
more, perfusion and monolithic RP-HPLC coupled with univariate
and multivariate regressions were successfully used to develop cal-
ibration models to predict the percentage of transgenic Bt maize in
flours achieving better calibration and prediction power using
multivariate regressions. According to the SEP values, the best re-
sults were found with the application of MLR regression models
to the perfusion RP-HPLC data in Aristis Bt and DKC6575 flour mix-
tures, and to the monolithic RP-HPLC data in PR33P67 flour mix-
tures with SEP values of 5.27, 2.34, and 3.84%, respectively.
Despite these methodologies constitute a first approach and fur-
ther investigations are needed, they enabled significant reductions
in analysis time, price and complexity in comparison with the
established (PCR)-based methods and immuno-assay.
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